Использованная литература
Авторы «Аналитической Астрофизики 2», Выражают свою благодарность исследователям космического пространства, авторам научных работ, материалы которых были исспользованы, при проведении аналитического исследования «Аналитической Астрофизики 2»
1. Википедии — свободной энциклопедии https://en.wikipedia.org
— https://ru.wikipedia.org/w/index.php?title=Эффект_Даннинга_—_Крюгера&oldid=127729398
2. - Wikipedia, https://en.wikipedia.org/wiki/Satellite_galaxies_of_the_Milky_Way
3.https://www.krugosvet.ru/enc/nauka_i_tehnika/astronomiya/MESTNAYA_GRUPPA_GALAKTIK.html
4. - The Astrophysical Journal
- https://nplus1.ru/news/2018/10/02/four-new-Milky-Way-satellites
Burçin Mutlu-Pakdil et al./The Astrophysical Journal (2018)
The Astrophysical Journal.
5. - https://www.hypernova.ru/zvezd/world/herbig-haro_jets_fuors_and_other
6. https://nplus1.ru/news/2018/10/02/four-new-Milky-Way-satellites
Burçin Mutlu-Pakdil et al./The Astrophysical Journal (2018)
The Astrophysical Journal.
7. «Движение звезд в Галактике», АЛЕКСЕЙ РАСТОРГУЕВ
https://postnauka.org/video/36218
8. https://nplus1.ru/news/2021/03/17/moving-bh ; The Astrophysical Journal.
9. «ANALYTICAL PHYSICS. ANALYTICAL ASTROPHYSICS»
Козлов С.И., Козлов И.С., Козлова М.С., Козлова М.С., Израиль, 2010 г.
10. http://newastrophysics.com
11. http://newastrophysics.com.ru
12. Л. А. Сучков, "Физика Космоса", 1986
13https://dzen.ru/a/ZVJ2N9j61HE3K4sI
https://mir24.tv/news/16451779/v-kosmose-nashli-bluzhdayushchuyu-chernuyu-dyru
VKOdnoklassnikiWhatsAppTwitter
14.Ольга Мурая Сверхмассивная непоседа: учёные впервые заметили движение чёрной дыры. https://www.vesti.ru/nauka/article/2537032
15. Александр Войтюк. Наземные телескопы отыскали убегающую из галактики сверхмассивную черную дыру. https://nplus1.ru/news/2021/03/17/moving-bh
16. https://arxiv.org/archive/astro-ph
17. https://www.nasa.gov
18. Млечный Путь https://ru.wikipedia.org/wiki/Млечный_Путь
19. Кинематика популяции белых карликов из SDSS DR12 Б. Ангиано, А. Ребасса-Мансергас, Э. Гарсия-Берро, С. Торрес, К. К. Фримен, T. Zwitter
Ежемесячные уведомления Королевского астрономического общества, том 469, выпуск 2, август 2017 г., страницы 2102-2120, https://doi.org/10.1093/mnras/stx796
Опубликовано: 24 Апреля 2017
20. The KBC void and Hubble tension contradict CDM on aGpc scale −
Milgromian dynamics as a possible solution
Moritz Haslbauer ,1,2‹ Indranil Banik 1‹† and Pavel Kroupa1,3
1Helmholtz-Institut f¨ur Strahlen- und Kernphysik, University of Bonn, Nussallee 14-16, D-53115 Bonn, Germany
2Max-Planck-Institut f¨ur Radioastronomie, Auf dem H¨ugel 69, D-53121 Bonn, Germany
3Faculty of Mathematics and Physics, Astronomical Institute, Charles University, V Holeˇsoviˇck´ach 2, CZ-180 00 Praha 8, Czech Republic
Accepted 2020 July 31. Received 2020 July 14; in original form 2020 May 8
21. Адибекян В. З., Сантос Н. К., Соуза С. Г. и Израэлян Г. 2011, A & A, 535, L11 [РЕКЛАМА НАСА]
[Перекрестная ссылка] [EDP Sciences] [Google Scholar]
22. Althaus, L. G., Cуrsico, A. H., Isern, J., & Garcнa-Berro, E. 2010, A&ARv, 18, 471 [NASA ADS] [CrossRef]
[Google Scholar]
23. Althaus, L. G., Miller Bertolami, M. M., & Cуrsico, A. H. 2013, A&A, 557, A19 [NASA ADS] [CrossRef] [EDP
Sciences] [Google Scholar]
24. Anguiano, B., Rebassa-Mansergas, A., Garcнa-Berro, E., et al. 2017, MNRAS, 469, 2102 [NASA ADS]
[CrossRef] [Google Scholar]
25. Anguiano, B., Majewski, S. R., Allende Prieto, C., et al. 2018, A&A, 620, A76 [NASA ADS] [CrossRef] [EDP
Sciences] [Google Scholar]
26. Antoja, T., Helmi, A., Romero-Gуmez, M., et al. 2018, Nature, 561, 360 [Google Scholar]
27. Aumer, M., & Binney, J. J. 2009, MNRAS, 397, 1286 [NASA ADS] [CrossRef] [Google Scholar]
28. Aumer, M., Binney, J., & Schцnrich, R. 2016, MNRAS, 462, 1697 [NASA ADS] [CrossRef] [Google Scholar]
29. Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Demleitner, M., & Andrae, R. 2021, AJ, 161, 147
[Google Scholar]
30. Bauer, E. B., Schwab, J., Bildsten, L., & Cheng, S. 2020, ApJ, 902, 93 [Google Scholar]
31. Belokurov, V., Erkal, D., Evans, N. W., Koposov, S. E., & Deason, A. J. 2018, MNRAS, 478, 611
[Google Scholar]
32. Bergemann, M., Ruchti, G. R., Serenelli, A., et al. 2014, A&A, 565, A89 [NASA ADS] [CrossRef] [EDP
Sciences] [Google Scholar]
33. Bergeron, P., Ruiz, M. T., & Leggett, S. K. 1997, ApJS, 108, 339 [Google Scholar]
34. Bergeron, P., Dufour, P., Fontaine, G., et al. 2019, ApJ, 876, 67 [NASA ADS] [CrossRef] [Google Scholar]
35. Binney, J. 2012, MNRAS, 426, 1324 [Google Scholar]
36. Bland-Hawthorn, J., & Gerhard, O. 2016, ARA&A, 54, 529 [Google Scholar]
37. Bland-Hawthorn, J., Sharma, S., Tepper-Garcia, T., et al. 2019, MNRAS, 486, 1167 [NASA ADS] [CrossRef]
[Google Scholar]
38. Blouin, S., Daligault, J., & Saumon, D. 2021, ApJ, 911, L5 [NASA ADS] [CrossRef] [Google Scholar]
39. Boeche, C., Siebert, A., Piffl, T., et al. 2013, A&A, 559, A59 [NASA ADS] [CrossRef] [EDP Sciences]
[Google Scholar]
40. Boubert, D., Strader, J., Aguado, D., et al. 2019, MNRAS, 486, 2618 [Google Scholar]
41. Bovy, J. 2015, ApJS, 216, 29 [NASA ADS] [CrossRef] [Google Scholar]
42. Buder, S., Sharma, S., Kos, J., et al. 2021, MNRAS, 506, 150 [NASA ADS] [CrossRef] [Google Scholar]
43. Camisassa, M. E., Althaus, L. G., Cуrsico, A. H., et al. 2016, ApJ, 823, 158 [CrossRef] [Google Scholar]
44. Camisassa, M. E., Althaus, L. G., Rohrmann, R. D., et al. 2017, ApJ, 839, 11 [NASA ADS] [CrossRef]
[Google Scholar]
45. Camisassa, M. E., Althaus, L. G., Cуrsico, A. H., et al. 2019, A&A, 625, A87 [NASA ADS] [CrossRef] [EDP
Sciences] [Google Scholar]
46. Camisassa, M. E., Althaus, L. G., Torres, S., et al. 2021, A&A, 649, L7 [NASA ADS] [CrossRef] [EDP
Sciences] [Google Scholar]
47. Cantat-Gaudin, T., & Anders, F. 2020, A&A, 633, A99 [NASA ADS] [CrossRef] [EDP Sciences]
[Google Scholar]
48. Casagrande, L., Schцnrich, R., Asplund, M., et al. 2011, A&A, 530, A138 [NASA ADS] [CrossRef] [EDP
Sciences] [Google Scholar]
49. Catalбn, S., Isern, J., Garcнa-Berro, E., & Ribas, I. 2008, MNRAS, 387, 1693 [Google Scholar]
50. Cheng, S., Cummings, J. D., & Mйnard, B. 2019, ApJ, 886, 100 [Google Scholar]
51. Cheng, S., Cummings, J. D., Mйnard, B., & Toonen, S. 2020, ApJ, 891, 160 [CrossRef] [Google Scholar]
52. Cummings, J. D., Kalirai, J. S., Tremblay, P. E., Ramirez-Ruiz, E., & Choi, J. 2018, ApJ, 866, 21 [NASA ADS]
[CrossRef] [Google Scholar]
53. Dalton, G., Trager, S. C., Abrams, D. C., et al. 2012, SPIE Conf. Ser., 8446, 84460P [Google Scholar]
54. de Jong, R. S., Bellido-Tirado, O., Chiappini, C., et al. 2012, SPIE Conf. Ser., 8446, 84460T [Google Scholar]
55. De Silva, G. M., Freeman, K. C., Bland-Hawthorn, J., et al. 2015, MNRAS, 449, 2604 [NASA ADS] [CrossRef]
[Google Scholar]
56. Dehnen, W., & Binney, J. J. 1998, MNRAS, 298, 387 [Google Scholar]
57. Deng, L.-C., Newberg, H. J., Liu, C., et al. 2012, Res. Astron. Astrophys., 12, 735 [Google Scholar]
58. Dimpel, M. 2018, Master’s Thesis, Friedrich Alexander Universitдt Erlangen Nьrnberg, SchloЯplatz 4,
91054 Erlangen, Germany [Google Scholar]
59. Doherty, C. L., Gil-Pons, P., Siess, L., & Lattanzio, J. C. 2017, PASA, 34, e056 [NASA ADS] [CrossRef]
[Google Scholar]
60. Dufour, P., Blouin, S., Coutu, S., et al. 2017, ASP Conf. Ser., 509, 3 [Google Scholar]
61. El-Badry, K., Rix, H.-W., & Heintz, T. M. 2021, MNRAS, 506, 2269 [NASA ADS] [CrossRef] [Google Scholar]
62. Fitzpatrick, E. L., Massa, D., Gordon, K. D., Bohlin, R., & Clayton, G. C. 2019, ApJ, 886, 108
[Google Scholar]
63. Gaia Collaboration (Prusti, T., et al.) 2016, A&A, 595, A1 [NASA ADS] [CrossRef] [EDP Sciences]
[Google Scholar]
64. Gaia Collaboration (Brown, A. G. A., et al.) 2018, A&A, 616, A1 [NASA ADS] [CrossRef] [EDP Sciences]
[Google Scholar]
65. Gaia Collaboration (Brown, A. G. A., et al.) 2021, A&A, 649, A1 [NASA ADS] [CrossRef] [EDP Sciences]
[Google Scholar]
66. Gentile Fusillo, N. P., Tremblay, P. E., Cukanovaite, E., et al. 2021, MNRAS, 508, 3877 [NASA ADS]
[CrossRef] [Google Scholar]
67. GRAVITY Collaboration (Abuter, R., et al.) 2019, A&A, 625, L10 [NASA ADS] [CrossRef] [EDP Sciences]
[Google Scholar]
68. Greenstein, J. L., Boksenberg, A., Carswell, R., & Shortridge, K. 1977, ApJ, 212, 186 [NASA ADS] [CrossRef]
[Google Scholar]
69. Halenka, J., Olchawa, W., Madej, J., & Grabowski, B. 2015, ApJ, 808, 131 [NASA ADS] [CrossRef]
[Google Scholar]
70. Hayden, M. R., Bovy, J., Holtzman, J. A., et al. 2015, ApJ, 808, 132 [Google Scholar]
71. Hayden, M. R., Recio-Blanco, A., de Laverny, P., et al. 2018, A&A, 609, A79 [NASA ADS] [CrossRef] [EDP
Sciences] [Google Scholar]
72. Hayden, M. R., Bland-Hawthorn, J., Sharma, S., et al. 2020, MNRAS, 493, 2952 [Google Scholar]
73. Helmi, A., Babusiaux, C., Koppelman, H. H., et al. 2018, Nature, 563, 85 [Google Scholar]
74. Hidalgo, S. L., Pietrinferni, A., Cassisi, S., et al. 2018, ApJ, 856, 125 [Google Scholar]
75. Hollands, M. A., Tremblay, P. E., Gдnsicke, B. T., Gentile-Fusillo, N. P., & Toonen, S. 2018, MNRAS, 480,
3942 [NASA ADS] [CrossRef] [Google Scholar]
76. Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90 [Google Scholar]
77. Jimйnez-Esteban, F. M., Torres, S., Rebassa-Mansergas, A., et al. 2018, MNRAS, 480, 4505
[Google Scholar]
78. Jцnsson, H., Holtzman, J. A., Allende Prieto, C., et al. 2020, AJ, 160, 120 [Google Scholar]
79. Koester, D. 2010, Mem. Soc. Astron. It., 81, 921 [NASA ADS] [Google Scholar]
80. Kollmeier, J. A., Zasowski, G., Rix, H. W., et al. 2017, ArXiv e-prints [arXiv:1711.03234] [Google Scholar]
81. Kunder, A., Kordopatis, G., Steinmetz, M., et al. 2017, AJ, 153, 75 [Google Scholar]
82. Lallement, R., Babusiaux, C., Vergely, J. L., et al. 2019, A&A, 625, A135 [NASA ADS] [CrossRef] [EDP
Sciences] [Google Scholar]
83. Lindegren, L. 2018, Re-normalising the astrometric chi-square in Gaia DR2, Tech. Rep. GAIA-C3-TN-LULL-
124-01 (Lund, Sweden: Lund Observatory) [Google Scholar]
84. Luo, A. L., Zhao, Y. H., Zhao, G., et al. 2019, VizieR Online Data Catalog, V/164 [Google Scholar]
85. Mackereth, J. T., & Bovy, J. 2018, PASP, 130, 114501 [Google Scholar]
86. Majewski, S. R., Schiavon, R. P., Frinchaboy, P. M., et al. 2017, AJ, 154, 94 [Google Scholar]
87. Matteucci, F., & Recchi, S. 2001, ApJ, 558, 351 [NASA ADS] [CrossRef] [Google Scholar]
88. McCleery, J., Tremblay, P.-E., Gentile Fusillo, N. P., et al. 2020, MNRAS, 499, 1890 [Google Scholar]
89. Minchev, I., Anders, F., Recio-Blanco, A., et al. 2018, MNRAS, 481, 1645 [NASA ADS] [CrossRef]
[Google Scholar]
90. Miyamoto, M., & Nagai, R. 1975, PASJ, 27, 533 [NASA ADS] [Google Scholar]
91. Napiwotzki, R., Karl, C. A., Lisker, T., et al. 2020, A&A, 638, A131 [NASA ADS] [CrossRef] [EDP Sciences]
[Google Scholar]
92. Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493 [Google Scholar]
93. Navarro, J. F., Abadi, M. G., Venn, K. A., Freeman, K. C., & Anguiano, B. 2011, MNRAS, 412, 1203 [NASA
ADS] [Google Scholar]
94. Ochsenbein, F., Bauer, P., & Marcout, J. 2000, A&AS, 143, 23 [NASA ADS] [CrossRef] [EDP Sciences]
[Google Scholar]
95. Oppenheimer, B. R., Hambly, N. C., Digby, A. P., Hodgkin, S. T., & Saumon, D. 2001, Science, 292, 698
[CrossRef] [Google Scholar]
96. Pauli, E. M., Napiwotzki, R., Altmann, M., et al. 2003, A&A, 400, 877 [NASA ADS] [CrossRef] [EDP
Sciences] [Google Scholar]
97. Pauli, E. M., Napiwotzki, R., Heber, U., Altmann, M., & Odenkirchen, M. 2006, A&A, 447, 173 [NASA ADS]
[CrossRef] [EDP Sciences] [Google Scholar]
98. Pietrinferni, A., Hidalgo, S., Cassisi, S., et al. 2021, ApJ, 908, 102 [NASA ADS] [CrossRef] [Google Scholar]
99. Randich, S., & Gilmore, G., & Gaia-ESO Consortium 2013, Messenger, 154, 47 [Google Scholar]
100. Rebassa-Mansergas, A., Maldonado, J., Raddi, R., et al. 2021, MNRAS, 505, 3165 [NASA ADS] [CrossRef]
[Google Scholar]
101. Reid, M. J., & Brunthaler, A. 2004, ApJ, 616, 872 [Google Scholar]
102. Reid, I. N., Sahu, K. C., & Hawley, S. L. 2001, ApJ, 559, 942 [NASA ADS] [CrossRef] [Google Scholar]
103. Richter, R., Heber, U., & Napiwotzki, R. 2007, ASP Conf. Ser., 372, 107 [Google Scholar]
104. Riello, M., De Angeli, F., Evans, D. W., et al. 2021, A&A, 649, A3 [NASA ADS] [CrossRef] [EDP Sciences]
[Google Scholar]
105. Romero, A. D., Campos, F., & Kepler, S. O. 2015, MNRAS, 450, 3708 [NASA ADS] [CrossRef]
[Google Scholar]
106. Rowell, N., & Kilic, M. 2019, MNRAS, 484, 3544 [NASA ADS] [CrossRef] [Google Scholar]
107. Rybizki, J., Green, G., Rix, H.-W., et al. 2022, MNRAS, 510, 2597 [NASA ADS] [CrossRef] [Google Scholar]
108. Schatzman, E. 1945, Annales d’Astrophysique, 8, 143 [Google Scholar]
109. Schцnrich, R., & Binney, J. 2009, MNRAS, 396, 203 [Google Scholar]
110. Schцnrich, R., Binney, J., & Dehnen, W. 2010, MNRAS, 403, 1829 [Google Scholar]
111. Schulz, H. 1977, A&A, 54, 315 [NASA ADS] [Google Scholar]
112. Seabroke, G. M., & Gilmore, G. 2007, MNRAS, 380, 1348 [NASA ADS] [CrossRef] [Google Scholar]
113. Sellwood, J. A., & Binney, J. J. 2002, MNRAS, 336, 785 [Google Scholar]
114. Silvestri, N. M., Oswalt, T. D., Wood, M. A., et al. 2001, AJ, 121, 503 [NASA ADS] [CrossRef]
[Google Scholar]
115. Sion, E. M., Holberg, J. B., Oswalt, T. D., et al. 2014, AJ, 147, 129 [Google Scholar]
116. Steinmetz, M., Zwitter, T., Siebert, A., et al. 2006, AJ, 132, 1645 [Google Scholar]
117. Taylor, M. B. 2006, ASP Conf. Ser., 351, 666 [Google Scholar]
118. Temmink, K. D., Toonen, S., Zapartas, E., Justham, S., & Gдnsicke, B. T. 2020, A&A, 636, A31 [EDP
Sciences] [Google Scholar]
119. Toonen, S., Portegies Zwart, S., Hamers, A. S., & Bandopadhyay, D. 2020, A&A, 640, A16 [NASA ADS]
[CrossRef] [EDP Sciences] [Google Scholar]
120. Torres, S., Cantero, C., Rebassa-Mansergas, A., et al. 2019a, MNRAS, 485, 5573 [NASA ADS] [CrossRef]
[Google Scholar]
121. Torres, S., Cantero, C., Camisassa, M. E., et al. 2019b, A&A, 629, L6 [NASA ADS] [CrossRef] [EDP Sciences]
[Google Scholar]
122. Torres, S., Rebassa-Mansergas, A., Camisassa, M. E., & Raddi, R. 2021, MNRAS, 502, 1753 [NASA ADS]
[CrossRef] [Google Scholar]
123. Tremblay, P. E., Cukanovaite, E., Gentile Fusillo, N. P., Cunningham, T., & Hollands, M. A. 2019a, MNRAS,
482, 5222 [Google Scholar]
124. Tremblay, P.-E., Fontaine, G., Gentile Fusillo, N. P., et al. 2019b, Nature, 565, 202 [CrossRef]
[Google Scholar]
125. Tremblay, P. E., Hollands, M. A., Gentile Fusillo, N. P., et al. 2020, MNRAS, 497, 130 [NASA ADS]
[CrossRef] [Google Scholar]
126. Trimble, V., & Greenstein, J. L. 1972, ApJ, 177, 441 [NASA ADS] [CrossRef] [Google Scholar]
127. Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nat. Methods, 17, 261 [Google Scholar]
128. Wang, R., Luo, A. L., Chen, J. J., et al. 2019, ApJS, 244, 27 [NASA ADS] [CrossRef] [Google Scholar]
129. Wegg, C., & Phinney, E. S. 2012, MNRAS, 426, 427 [NASA ADS] [CrossRef] [Google Scholar]
130. Wegner, G. 1974, MNRAS, 166, 271 [CrossRef] [Google Scholar]
131. Wegner, G. 1981, AJ, 86, 264 [NASA ADS] [CrossRef] [Google Scholar]
132. Wenger, M., Ochsenbein, F., Egret, D., et al. 2000, A&AS, 143, 9 [NASA ADS] [CrossRef] [EDP Sciences]
[Google Scholar]
133. Xiang, M., Ting, Y.-S., Rix, H.-W., et al. 2019, ApJS, 245, 34 [Google Scholar]
134. Yu, J., & Liu, C. 2018, MNRAS, 475, 1093 [Google Scholar]
135. Characterization of a Peculiar Einstein Probe Transient EP240408a: An Exotic Gamma-Ray Burst or an Abnormal Jetted Tidal Disruption Event?
Brendan O’Connor, Dheeraj Pasham, Igor Andreoni, Jeremy Hare, Paz Beniamini, Eleonora Troja, Roberto Ricci, Dougal Dobie, Joheen Chakraborty, Mason Ng, Noel Klingler, Viraj Karambelkar, Sam Rose, Steve Schulze, Geoffrey Ryan, Simone Dichiara, Itumeleng Monageng, David Buckley, Lei Hu, Gokul P. Srinivasaragavan, Gabriele Bruni, Tomás Cabrera, S. Bradley Cenko, Hendrik van Eerten, James Freeburn, Erica Hammerstein, Mansi Kasliwal, Chryssa Kouveliotou, Keerthi Kunnumkai, James K. Leung, Amy Lien, Antonella Palmese, and Takanori Sakamoto
https://iopscience.iop.org/article/10.3847/2041-8213/ada7f5
136. NASA’s Hubble Provides Bird’s-Eye View of Andromeda Galaxy’s Ecosystem
Credits: NASA, ESA, Alessandro Savino (UC Berkeley), Joseph DePasquale (STScI), Akira Fujii DSS2
https://science.nasa.gov/missions/hubble/nasas-hubble-provides-birds-eye-view-of-andromeda-galaxys-ecosystem/
137. Alien Structures or Shock Waves? Strange Filaments Discovered in the Milky Way Baffle Astronomers
By National Radio Astronomy ObservatoryApril 9, 2025
https://scitechdaily.com/alien-structures-or-shock-waves-strange-filaments-discovered-in-the-milky-way-baffle-astronomers/
138. Cosmicflows-3: Cosmography of the Local Void
R. Brent Tully1 , Daniel Pomarède2 , Romain Graziani3, Hélène M. Courtois3 , Yehuda Hoffman4, and Edward J. Shaya5
1 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA
2 Institut de Recherche sur les Lois Fondamentales de l’Univers, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
3 University of Lyon, UCB Lyon 1, CNRS/IN2P3, IPN Lyon, France
4 Racah Institute of Physics, Hebrew University, Jerusalem, 91904, Israel
5 University of Maryland, Astronomy Department, College Park, MD 20743, USA
Received 2019 April 1; revised 2019 May 16; accepted 2019 May 17; published 2019 July 22
https://doi.org/10.3847/1538-4357/ab2597
139. The KBC void & Hubble tension in standard cosmology & Milgromian dynamics
Authors: Moritz Haslbauer, Indranil Banik & Pavel Kroupa
Publication: The KBC void and Hubble tension contradict ΛCDM on a Gpc scale
– Milgromian dynamics as a possible solution (MNRAS, 499, 2845)
140. АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ, 2019, том 74,№4, с. 431–453
УДК 524.6:524.47-32/36
ШАРОВЫЕ ЗВЁЗДНЫЕ СКОПЛЕНИЯ В ГАЛАКТИКЕ: ХИМИЧЕСКИЙ
СОСТАВ VS КИНЕМАТИКА
c 2019 В. А. Марсаков1*, В. В. Коваль1**, М. Л. Гожа1***
1Южный федеральный университет, Ростов-на-Дону, 344000 Россия
Поступила в редакцию 18 марта 2019 года; после доработки 8 июля 2019 года; принята к публикации 8 июля 2019 года
141. Шаровые звёздные скопления. Автор: Студент 591 группы
Стрекалова Полина Владимировна. САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
142. JOURNAL ARTICLE
The KBC void and Hubble tension contradict ΛCDM on a Gpc scale −
Milgromian dynamics as a possible solution
Monthly Notices of the Royal Astronomical Society, Volume 499, Issue 2, December 2020, Pages 2845–2883,
https://doi.org/10.1093/mnras/staa2348
Published: 26 October 2020
143. The KBC void and Hubble tension contradict CDM on aGpc scale −
Milgromian dynamics as a possible solution
Moritz Haslbauer ,1,2‹ Indranil Banik 1‹† and Pavel Kroupa1,3
1Helmholtz-Institut f¨ur Strahlen- und Kernphysik, University of Bonn, Nussallee 14-16, D-53115 Bonn, Germany
2Max-Planck-Institut f¨ur Radioastronomie, Auf dem H¨ugel 69, D-53121 Bonn, Germany
3Faculty of Mathematics and Physics, Astronomical Institute, Charles University, V Holeˇsoviˇck´ach 2, CZ-180 00 Praha 8, Czech Republic
Accepted 2020 July 31. Received 2020 July 14; in original form 2020 May 8